
 

CMSC 201 – Computer Science I for Majors Page 1 

CMSC 201 Fall 2016 
Lab 13 – More Recursion 

 
Assignment: Lab 13 – More Recursion 
Due Date: During discussion, December 5th through 8th 
Value: 10 points 
 
 
Part 1A: What is Recursion? 
So far this semester, we’ve learned many different ways to control the flow of a 
program: selection statements, loops (both for and while), and functions.  

One specialized type of function makes use of recursion, and so we call it a 
recursive function. 
 
Some problems can be solved by breaking a 
problem down into smaller pieces of the same 
problem.  A real world example would be 
Matryoshka dolls, also known as Russian nesting 
dolls.  These are sets of hollow wooden dolls that 
“nest” inside each other, with each doll getting 
progressively smaller, with the smallest doll being 
solid wood. 

(Image from Wikimedia: http://bit.ly/2fDQstN) 

 
If our overall goal is to open all of the dolls until we reached the smallest doll, 
we can break the problem down into smaller pieces of itself. 

1. Open the doll 
2. If there’s another hollow doll inside, go back to step 1 
3. If the doll is solid, stop 

 
This is a very simple example of a recursive solution to a problem.  A key 
component of a recursive function is that it must call itself in order to solve the 
problem.  In our Matryoshka example, opening the doll is the “function,” and we 
continue to “call” that function until we’ve reached the solid doll at the center. 
 
  

http://bit.ly/2fDQstN
http://bit.ly/2fDQstN


 

CMSC 201 – Computer Science I for Majors Page 2 

 
Part 1B: Recursion vs Iteration 
 
You could have also solved the previous Matryoshka problem with a while 

loop, or even a for loop if we knew ahead of time how many dolls there were.  

Both recursion and iteration break a large problem down into smaller pieces.  
The main difference between recursion and iteration can be found if we look at 
their underlying purpose. 

 With iteration, the purpose is to repeat an action until a task is done.  
This is true for while loops (stop when the conditional evaluates to 

False) and for loops (stop when it reaches the end of the list). 

 With recursion the purpose is to break a problem down into smaller and 
smaller pieces of itself.  When you combine all of those solved smaller 
pieces of the problem, the problem as a whole is solved. 

 
 
 
Part 1C: “Parts” of a Recursive Function 
 
A successful recursive function must have two parts: at least one base case 
and at least one recursive case.  The base case is similar to the conditional in 
a while loop, in that it tells the program when to stop.  In a recursive function, 

it stops calling itself, and typically returns something (a value, a message, or 
even None).  A recursive function may have more than one base case, just like 

a while loop may have more than one comparison in its conditional. 

 
The recursive case is the more interesting part, since this is where the function 
makes its recursive calls to itself.  A recursive call is the most important part 
of a recursive function, and has a few key features: 

 It must call the function again with new inputs. 

 These new inputs must approach at least one of the base cases. 

 If needed, the call must also include the return keyword, in order to be 

able to return the final result from the original function call. 
 
 
  



 

CMSC 201 – Computer Science I for Majors Page 3 

 
Part 1D: Recursive Examples 
 
You’ve seen a number of recursive examples in class already, but let’s look at 
a few more.  A very simple one is a “countdown” function – as a reminder, this 
is a toy example.  We could easily do this with a loop, but we want to instead 
examine how recursion works. 
 
Here is the code for the recursive countdown function: 

 
def countDown(currNum): 

 

    # base case 

    if currNum == 0: 

        print("The end!") 

    # recursive case 

    else: 

        print("Counting down from", currNum, "...") 

        countDown(currNum - 1)      # <----RECURSIVE CALL 

 
Take a look at this code and see if you can figure out exactly how it works.  
Once you have, here is a sample run, using the full code (including a simple 
main() to get the number and make the initial call to the recursive function): 

 
Please enter a number to count down from: 4 

Counting down from 4 ... 

Counting down from 3 ... 

Counting down from 2 ... 

Counting down from 1 ... 

The end! 

 
The base case, when the function ends, is when the number reaches zero.  
The function doesn’t print anything out or return anything, it simply doesn’t call 
itself (the recursive function) again. 
 
  



 

CMSC 201 – Computer Science I for Majors Page 4 

Here is a slightly less “toy” example: something to compute factorials.  
Factorials were discussed during lecture, but as a reminder, they are the 
product of all the numbers between the selected number and 1: 

6! = * 6 * 5 * 4 * 3 * 2 * 1 
 
Here is the code for the recursive function for factorial.  It has a few extra 
print() statements to help us trace our way through the function when it is 

run. 
 
def fact(num): 

    print("Calculating factorial for", num) 

 

    # base cases (0! and 1! both equal 1) 

    if num == 0: 

        return 1 

    if num == 1: 

        return 1 

    # recursive case 

    else: 

        print("\tIt is " + str(num) + " * " \ 

                  + str(num-1) + "!") 

        return num * fact(num - 1)   # <---RECURSIVE CALL 

 
Again, take a look at this code and see if you can figure out exactly how it 
works.  Here is a sample run: 
 
Please enter a number to compute factorial for: 6 

Calculating factorial for 6 

        It is 6 * 5! 

Calculating factorial for 5 

        It is 5 * 4! 

Calculating factorial for 4 

        It is 4 * 3! 

Calculating factorial for 3 

        It is 3 * 2! 

Calculating factorial for 2 

        It is 2 * 1! 

Calculating factorial for 1 

The factorial of 6 is 720 



 

CMSC 201 – Computer Science I for Majors Page 5 

 
 

Part 2: Word Scrambler 
 
After logging into GL, navigate to the Labs folder inside your 201 folder.  

Create a folder there called lab13, and go inside the newly created lab13 

directory. 
 

linux2[1]% cd 201 

linux2[2]% cd Labs 

linux2[3]% pwd 

/afs/umbc.edu/users/k/k/k38/home/201/Labs  

linux2[4]% mkdir lab13 

linux2[5]% cd lab13 

linux2[6]% pwd 

/afs/umbc.edu/users/k/k/k38/home/201/Labs/lab13 

linux2[7]% █ 

 
Once you’re in the folder, you will need to copy the starter file from my public 
directory.  Type (all on one line – don’t forget the rest of the command!): 
cp /afs/umbc.edu/users/k/k/k38/pub/cs201/given_scramble.py 

scramble.py 

 
To open the file for editing, type 
 emacs scramble.py 

and hit enter. 
 
The first thing you should do in your file is complete the comment header 
block, filling in your name, section number, email, and the date. 
 
Then you can start completing the code, following the comments in the file and 
the instructions on the following page. 
  



 

CMSC 201 – Computer Science I for Majors Page 6 

For Lab 13, you will be implementing a word scrambler, which takes in a string 
and prints out all possible complete permutations of that string.  For example, if 
the string was “201”, the permutations would be: 
 “201”, “210”, “021”, “012”, “120”, and “102” 
 
You will be implementing this with recursion, although we will use a for loop 

as part of the program.  The algorithm your program should use is: 

 For each letter, start a new word with that letter 
o For each letter remaining, add it to the currently growing word 

 Continue until no letters remain 
 

This image gives a breakdown of each recursive call, and how the recursive 
calls will branch. 

 
 

 
Here are the tasks you need to accomplish to complete this lab: 
 

 Figure out and handle the base case in permute() 

 
 Make a recursive call using the new values (one of which you will have to 

create) 
 

 Update main() to include an initial call to permute() 

 

 
You can find sample output from the program on the next page. 
  



 

CMSC 201 – Computer Science I for Majors Page 7 

Here is some sample output of the program, with the user input in blue.   
 
Notice that the scrambler will output “duplicates” if the word has repeating 
letters, because it only cares about letters left, not about their uniqueness. 
 
bash-4.1$ python scramble.py 

Please enter a string to scramble: CMSC 

CMSC 

CMCS 

CSMC 

CSCM 

CCMS 

CCSM 

MCSC 

MCCS 

MSCC 

MSCC 

MCSC 

MCCS 

SCMC 

SCCM 

SMCC 

SMCC 

SCMC 

SCCM 

CMSC 

CMCS 

CSMC 

CSCM 

CCMS 

CCSM 

 

bash-4.1$ python scramble.py 

Please enter a string to scramble: one 

one 

oen 

noe 

neo 

eon 

eno 

 

  



 

CMSC 201 – Computer Science I for Majors Page 8 

 

Part 3: Completing Your Lab 
 
To test your program, first enable Python 3, then run scrambler.py.  Start off 

by figuring out and testing the base case, before moving onto using inputs that 
will require recursion. 
 
Since this is an in-person lab, you do not need to use the submit command to 

complete your lab.  Instead, raise your hand to let your TA know that you are 
finished. 
 
They will come over and check your work – they may ask you to run your 
program for them, and they may also want to see your code.  Once they’ve 
checked your work, they’ll give you a score for the lab, and you are free to 
leave. 
 
 

IMPORTANT: If you leave the lab without the TA checking 
your work, you will receive a zero for this week’s lab.  Make 
sure you have been given a grade before you leave! 
 
 
 


